Hydrothermal carbonization (HTC) is a promising technology to convert wet biomass into carbon-rich materials. Until now, the chemical processes occurring and their influence on the product properties are not well understood. Therefore, a target-oriented production of materials with defined properties is difficult, if not impossible. Here, model compounds such as cellulose and lignin, as well as different definite biomasses such as straw and beech wood are converted by hydrothermal carbonization. Following this, thermogravimetic (TGA) and FTIR measurements are used to get information about chemical structure and thermal properties of the related hydrochars. Some of the isolated materials are thermally post-treated (490 • C and 700 • C) and analyzed. The results show that at "mild" HTC conversion, the cellulose part in a lignocellulose matrix is not completely carbonized and there is still cellulose present. Thermal post-treatment makes the properties of product materials more similar and shows complete carbonization with increase aromatic cross-linking, proven by TGA and FTIR results.