e synthesis of polydispersed zinc sulphide and copper sulphide nanocrystals capped with polar L-alanine (Aln) and L-aspartic acid (Asp) molecules is reported. e resulting nanocrystals were characterized by UV-visible spectroscopy (UV-Vis), photoluminescence (PL), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). UV-Vis absorption spectra of all samples were blue-shifted from the bulk band edges due to quantum confinement effects. PL emission spectrum of the nanoparticles showed peaks at 453 and 433 nm for Aln-capped ZnS and CuS nanoparticles, respectively, while peaks for Asp-capped ZnS and CuS nanoparticles were observed at 455 and 367 nm, respectively. e average particle sizes for Aln-capped ZnS and Asp-capped ZnS nanoparticles synthesized at 35°C were measured to be 2.88 nm and 1.23 nm, respectively. e antibacterial properties were tested using different strains of both positive and negative bacteria and fungi. It was found that capped-copper sulphide nanoparticles were more effective against the bacteria than cappedzinc sulphide nanoparticles. Staphylococcus aureus (ATCC 25923) was the most susceptible one with an MIC of 0.05 mg/mL for uncapped-CuS nanoparticles while Pseudomonas aeruginosa (ATCC 15442) and Cryptococcus neoformans (ATCC 14116) were the least ones with the MIC of 3.125 mg/mL for both uncapped-CuS and Aln-capped CuS.