Phaeodactylum tricornutum is an interesting source of biomass to produce biocrude by hydrothermal liquefaction (HTL). Its biochemical composition, along with its biomass productivity, can be modulated according to this specific application by varying the photoperiod, the addition of CO2 or the variation of the initial nitrate concentration. The lab-scale culture allowed the production of a P. tricornutum biomass with high biomass and lipid productivities using a 18:6 h light:dark photoperiod and a specific CO2 injection. An initial concentration of nitrates (11.8 mM) in the culture was also essential for the growth of this species at the lab scale. The biomass generated in the scale-up photoreactor had acceptable biomass and lipid productivities, although the values were higher in the biomass cultivated at the lab scale because of the difficulty for the light to reach all cells, making the cells unable to develop and hindering their growth. The biocrudes from a 90-L cultivated microalga (B-90L) showed lower yields than the ones obtained from the biomass cultivated at the lab scale (B-1L) because of the lower lipid and high ash contents in this biomass. However, the culture scaling-up did not affect significantly the heteroatom concentrations in the biocrudes. A larger-scale culture is recommended to produce a biocrude to be used as biofuel after a post-hydrotreatment stage.