Lithium-sulfur (Li-S) batteries are expected to overcome the limit of current energy storage devices by delivering high specific energy with low material cost. However, the potential of Li-S batteries has not yet been realized because of several technical barriers. Poor electrochemical performance is mainly attributed to the low electrical conductivity of the fully charged and discharged species, the irreversible loss of polysulfide anions and the decrease in the number of electrochemically active reaction sites during battery operation. Here, we report that the introduction of graphene quantum dots (GQDs) into the sulfur cathode dramatically enhanced sulfur/sulfide utilization, yielding high performance. In addition, the GQDs induced structural integrity of the sulfur-carbon electrode composite by oxygen-rich functional groups. This hierarchical architecture enabled fast charge transfer while minimizing the loss of lithium polysulfides, which is attributed to the physicochemical properties of GQDs. The mechanisms through which excellent cycling and rate performance are achieved were thoroughly studied by analyzing capacity versus voltage profiles. Furthermore, experimental observations and theoretical calculations further clarified the role played by GQDs by proving that C-S bonding occurs. Thus, the introduction of GQDs into Li-S batteries will provide an important breakthrough allowing their use as high-performance and low-cost batteries for next-generation energy storage systems.
INTRODUCTIONRechargeable lithium-ion batteries are widely used in various applications, such as portable devices, bio-medical implants and electric vehicles, because of their high energy and power density. 1,2 However, current lithium-ion batteries based on the graphite and transition metal oxide couple have nearly reached their ceiling with respect to storage capability because of the limitations associated with their electrical properties and crystal structure. Therefore, breakthroughs in new energy storage systems that can surpass the current performance barrier of lithium-ion batteries should be brought about in a timely manner. Recently, Li-S batteries that can operate by the reversible electrochemical transformation between sulfur (S 8 ) and dilithium sulfide (Li 2 S) have attracted great attention because they can deliver high energy with a moderate voltage owing to the direct use of