Spent Gromwell root-based multifunctional carbon dots (g-CDs) and sulfur-functionalized g-CDs (g-SCDs) were synthesized using a hydrothermal method. The mean particle size of g-CDs was confirmed to be 9.1 nm by TEM (transmission electron microscopy) analysis. The zeta potentials of g-CDs and g-SCDs were mostly negative with a value of −12.5 mV, indicating their stability in colloidal dispersion. Antioxidant activities were 76.9 ± 1.6% and 58.9 ± 0.8% for g-CDs, and 99.0 ± 0.1% and 62.5 ± 0.5% for g-SCDs by 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging tests, respectively. In addition, the bathochromic shift of g-CDs is observed when their emission peaks appear at a higher wavelength than the excitation peaks. The prepared g-CDs and g-SCDs solutions were used as a coating agent for potato slices. The browning index of the control potato slices increased significantly from 5.0 to 33.5% during 24 to 72 h storage. However, the sample potato slices coated with g-CDs or g-SCDs suppressed the increase in the browning index. In particular, the browning index of the potato slices coated with g-SCDs ranged from 1.4 to 5.5%, whereas the potato slices coated with g-CDs had a browning index ranging from 3.5 to 26.1%. The g-SCDs were more effective in delaying oxidation or browning in foods. The g-CDs and g-SCDs also played a catalytic role in the Rhodamine B dye degradation activity. This activity will be useful in the future to break down toxins and adulterants in food commodities.