N-Doped TiO2nanocrystals were synthesized via a simple sonochemical route, using titanium tetrachloride, aqueous ammonia, and urea as starting materials. The as-synthesized samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) equipped with an energy dispersion X-ray spectrometer (EDS), transmission electron microscopy (TEM), UV-vis diffuse reflection spectroscopy, Raman spectroscopy, and nitrogen adsorption-desorption isotherms. The results of TEM and nitrogen adsorption-desorption showed that the average size and specific surface area of the as-synthesized nanocrystals are 10 nm and 107.2 m2/g, respectively. Raman spectral characterization combined with the results of XRD and EDS revealed that N dopant ions were successfully doped into TiO2. Compared with pure TiO2, the adsorption band edge of N-doped TiO2samples exhibited an obvious red shift to visible region. The photocatalytic activities were evaluated by the degradation of Rhodamine B (RhB) under visible light, and the results showed that the N-doped TiO2sample synthesized by an optimal amount of urea exhibited excellent photocatalytic activity due to its special mesoporous structure and the incorporation of nitrogen dopant ions.