The boundary layer hygrothermal stresses in the thick sandwich cylinder with laminated face are investigated. Uniform and through the thickness steady-state distribution for temperature and moisture content can be considered in the analysis. A displacement based layer-wise formulation is presented for analysis of thick sandwich composite cylinders subjected to hygrothermal loading conditions. Considering a general displacement field and employing a displacement based layer-wise theory, the governing equations of thick laminated sandwich cylinder are obtained. The displacement based formulation is derived for thick sandwich cylinder, which is subjected to non-uniform hygrothermal loading conditions. The faces of the sandwich cylinder are made of laminated composite with general layer stacking. The governing equations of the system include a set of coupled differential equations on the displacement components of the numerical surfaces. A semi-analytical solution is developed and the governing equations are solved for free edge boundary conditions. The accuracy of the numerical results is validated by the results of the finite element simulation and good agreements are seen between the predicted results. The free edge interlaminar stresses distributions are presented for thin and thick sandwich composite cylinders for uniform and non-uniform loading conditions. It is concluded that the presented layer-wise formulation is efficient and accurate method for analysis of thermal and hygroscopic stresses in thick and thin sandwich cylinders with general layer stacking.