This review explores the production of the fungal polysaccharide pullulan by mutants and natural isolates of Aureobasidium species using strain improvement. Pullulan is a neutral polysaccharide gum whose structure is a maltotriose-containing glucan. This polysaccharide gum has applications in the fields of food, pharmaceuticals, biomedical and wastewater treatment. The strain improvement of Aureobasidium species has focused on the pullulan production process, including the isolation of strains exhibiting reduced pigmentation, polysaccharide overproduction, the production of pullulan with variable molecular weight, and increased osmotolerant strains promoting pullulan production at high carbon source concentrations and pullulan production on hemicellulosic substrates. The majority of studies have emphasized the isolation of reduced pigmentation and pullulan hyperproducer strains since the goal of large-scale commercial pullulan production is to synthesize non-pigmented polysaccharides. A promising area of strain improvement is the isolation of strains that synthesize authentic pullulan from hemicellulosic substrates. If strain improvement in this area is successful, the goal of commercially producing pullulan at a competitive cost will eventually be achieved.