This paper introduces an effective hybrid scheme for the denoising of electrocardiogram (ECG) signals corrupted by non-stationary noises using genetic algorithm (GA) and wavelet transform (WT). We first applied a wavelet denoising in noise reduction of multi-channel high resolution ECG signals. In particular, the influence of the selection of wavelet function and the choice of decomposition level on efficiency of denoising process was considered. Selection of a suitable wavelet denoising parameters is critical for the success of ECG signal filtration in wavelet domain. Therefore, in our noise elimination method the genetic algorithm has been used to select the optimal wavelet denoising parameters which lead to maximize the filtration performance. The efficiency performance of our scheme is evaluated using percentage root mean square difference (PRD) and signal to noise ratio (SNR). The experimental results show that the introduced hybrid scheme using GA has obtain better performance than the other reported wavelet thresholding algorithms as well as the quality of the denoising ECG signal is more suitable for the clinical diagnosis.