Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Glutamine--a popular nutritional supplement, non-toxic amino acid, and an essential interorgan and intercellular ammonia transporter--can destroy the neurons' mitochondria. When glutamine enters (like a Trojan horse) into the mitochondria, in the presence of glutaminase, it reacts with water and yields glutamate and excess ammonia which opens gates in the membrane of the mitochondria and thereby destroys it. The mechanistic details underlying the molecular basis of the catabolic production of excess ammonia remain unclear. In the present paper, both 5-oxoproline-mediated and direct pathways for glutamine deamidation are studied using wave function and density functional theories. The mechanisms are studied both in the gas phase and in aqueous solution using the polarizable continuum model (PCM) and solvent model on density (SMD) solvation models. Among three glutamine deamidation pathways, a two-step pathway, GDB, shows the lowest gas phase barrier height of 189 kJ/mol with the G3MP2B3 level of theory. Incorporation of solvent through PCM and SMD models reduces the barrier height to 183 and 174 kJ/mol, respectively. For the hydrolysis of 5-oxoproline, a two-step mechanism, pathway PH-B, provides a lower gas phase energy barrier (187 kJ/mol) compared to one-step (201 kJ/mol) and three-step (227 kJ/mol) pathways at G3MP2B3. Although direct hydrolysis with OH(-), pathway DHE, has the lowest gas phase barrier of 135 kJ/mol, the solvent has little effect on the barrier. For the direct hydrolysis with OH(-)/H2O, pathway DHF, the overall barrier is 143 kJ/mol, in the gas phase at G3MP2B3. In aqueous solution, the overall barrier decreases to 76 and 75 kJ/mol with PCM and SMD, respectively, at B3LYP/6-31+G(d,p), making this the most plausible mechanism. Compared to PCM, SMD predicts lower barriers for nearly all pathways investigated.
Glutamine--a popular nutritional supplement, non-toxic amino acid, and an essential interorgan and intercellular ammonia transporter--can destroy the neurons' mitochondria. When glutamine enters (like a Trojan horse) into the mitochondria, in the presence of glutaminase, it reacts with water and yields glutamate and excess ammonia which opens gates in the membrane of the mitochondria and thereby destroys it. The mechanistic details underlying the molecular basis of the catabolic production of excess ammonia remain unclear. In the present paper, both 5-oxoproline-mediated and direct pathways for glutamine deamidation are studied using wave function and density functional theories. The mechanisms are studied both in the gas phase and in aqueous solution using the polarizable continuum model (PCM) and solvent model on density (SMD) solvation models. Among three glutamine deamidation pathways, a two-step pathway, GDB, shows the lowest gas phase barrier height of 189 kJ/mol with the G3MP2B3 level of theory. Incorporation of solvent through PCM and SMD models reduces the barrier height to 183 and 174 kJ/mol, respectively. For the hydrolysis of 5-oxoproline, a two-step mechanism, pathway PH-B, provides a lower gas phase energy barrier (187 kJ/mol) compared to one-step (201 kJ/mol) and three-step (227 kJ/mol) pathways at G3MP2B3. Although direct hydrolysis with OH(-), pathway DHE, has the lowest gas phase barrier of 135 kJ/mol, the solvent has little effect on the barrier. For the direct hydrolysis with OH(-)/H2O, pathway DHF, the overall barrier is 143 kJ/mol, in the gas phase at G3MP2B3. In aqueous solution, the overall barrier decreases to 76 and 75 kJ/mol with PCM and SMD, respectively, at B3LYP/6-31+G(d,p), making this the most plausible mechanism. Compared to PCM, SMD predicts lower barriers for nearly all pathways investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.