Magnetic edge states are responsible for various phenomena of
magneto-transport. Their importance is due to the fact that, unlike the bulk of
the eigenstates in a magnetic system, they carry electric current along the
boundary of a confined domain. Edge states can exist both as interior (quantum
dot) and exterior (anti-dot) states. In the present report we develop a
consistent and practical spectral theory for the edge states encountered in
magnetic billiards. It provides an objective definition for the notion of edge
states, is applicable for interior and exterior problems, facilitates efficient
quantization schemes, and forms a convenient starting point for both the
semiclassical description and the statistical analysis. After elaborating these
topics we use the semiclassical spectral theory to uncover nontrivial spectral
correlations between the interior and the exterior edge states. We show that
they are the quantum manifestation of a classical duality between the
trajectories in an interior and an exterior magnetic billiard.Comment: 170 pages, 48 figures (high quality version available at
http://www.klaus-hornberger.de