“…In the following table, by the preceeding argument, any forms lying in different equivalence classes (with respect to their Hasse-Witt invariants) cannot intersect in a Zariski dense subgroup of SO q . α, β 1st row of Q Hasse invariants Nature α = 0, 0, 0, 1 3 , 2 3 β = 1 2 , 1 12 , 5 12 , 7 12 , 11 12 (7, 5, 3, 1, −5) (1, 1, 1, 1, 1) Thin [FMS14] α = 0, 0, 0, 1 3 , 2 3 β = 1 2 , 1 8 , 3 8 , 5 8 , 7 8 (7, 1, −1, 1, −9) Thin [FMS14] α = 0, 0, 0, 1 4 , 3 4 β = 1 2 , 1 10 , 3 10 , 7 10 , 9 10 (19, 13, 3, −3, −13) Thin [FMS14] α = 0, 1 8 , 3 8 , 5 8 , 7 8 β = 1 2 , 1 5 , 2 5 , 3 5 , 4 5 (19, −11, −1, 9, −21) Thin [FMS14] α = 0, 0, 0, 1 6 , 5 6 β = 1 2 , 1 10 , 3 10 , 7 10 , 9 10 (67, 53, 19, −19, −53) (−1, −1, 1, 1, 1) Thin [FMS14] α = 0, 1 3 , 2 3 , 1 6 , 5 6 β = 1 2 , 1 5 , 2 5 , 3 5 , 4 5 (19, −1, −11, −1, −11) Thin [FMS14] α = 0, 1 4 , 3 4 , 1 6 , 5 6 β = 1 2 , 1 5 , 2 5 , 3 5 , 4 5 (67, 17, −53, −43, 7) (1, −1, −1, 1, 1) Thin [FMS14] (6, 0, −2, 0, −10) ?? α = 0, 0, 0, 1 3 , 2 3 β = 1 2 , 1 2 , 1 2 , 1 4 , 3 4 (16, −6, −8, 10, −16) ??…”