The article is devoted to the new results of the author, which add his previously published ones, of studying hidden rules and symmetries in structures of long single-stranded DNA sequences in eukaryotic and prokaryotic genomes. The author uses the existence of different alphabets of n-plets in DNA: the alphabet of 4 nucleotides, the alphabet of 16 douplets, the alphabet of 64 triplets, etc. Each of such DNA alphabets of n-plets can serve for constructing a text as a chain of these n-plets. Using this possibility, the author represents any long DNA nucleotide sequence as a bunch of many so-called n-texts, each of which is written on the basis of one of these alphabets of n-plets. Each of such n-texts has its individual percents of different n-plets in its genomic DNA. But it turns out that in such multi-alphabetical or multilayer presentation of each of many genomic DNA, analyzed by the author, universal rules of probabilities and symmetry exist in interrelations of its different n-texts regarding their percents of n-plets. In this study, the tensor product of matrices and vectors is used as an effective analytical tool borrowed from the arsenal of quantum mechanics. Some additions to the topic of algebra-holographic principles in genetics are also presented. Taking into account the described genomic rules of probability, the author puts also forward a concept of the important role of stochastic resonances in genetic informatics.