The unexploited unification of general relativity and quantum mechanics (QM) prevents the proper understanding of the micro- and macroscopic world. Here we put forward a mathematical approach that introduces the problem in terms of negative curvature manifolds. We suggest that the oscillatory dynamics described by wave functions might take place on hyperbolic continuous manifolds, standing for the counterpart of QM’s Hilbert spaces. We describe how the tenets of QM, such as the observable A, the autostates ψa and the Schrodinger equation for the temporal evolution of states, might work very well on a Poincaré disk equipped with rotational groups. This curvature-based approach to QM, combined with the noncommutativity formulated in the language of gyrovectors, leads to a mathematical framework that might be useful in the investigation of relativity/QM relationships. Furthermore, we introduce a topological theorem, termed the punctured balloon theorem (PBT), which states that an orientable genus-1 surface cannot encompass disjoint points. PBT suggests that hyperbolic QM manifolds must be of genus ≥ 1 before measuring and genus zero after measuring. We discuss the implications of PBT in gauge theories and in the physics of the black holes.