2004
DOI: 10.1017/s0305004103007175
|View full text |Cite
|
Sign up to set email alerts
|

Hypercovers and simplicial presheaves

Abstract: Abstract. We use hypercovers to study the homotopy theory of simplicial presheaves. The main result says that model structures for simplicial presheaves involving local weak equivalences can be constructed by localizing at the hypercovers. One consequence is that the fibrant objects can be explicitly described in terms of a hypercover descent condition, and the fibrations can be described by a relative descent condition. We give a few applications for this new description of the homotopy theory of simplicial p… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

2
212
0
6

Year Published

2006
2006
2021
2021

Publication Types

Select...
6
2

Relationship

1
7

Authors

Journals

citations
Cited by 159 publications
(222 citation statements)
references
References 22 publications
2
212
0
6
Order By: Relevance
“…Fibrancy is shown to be a local condition in [DHI04], and hence follows from Lemma 8.3.2 and the fibrancy of the presheaves E(K p ) of Section 8.3.…”
Section: Descent From Compact Open Subgroupsmentioning
confidence: 85%
See 1 more Smart Citation
“…Fibrancy is shown to be a local condition in [DHI04], and hence follows from Lemma 8.3.2 and the fibrancy of the presheaves E(K p ) of Section 8.3.…”
Section: Descent From Compact Open Subgroupsmentioning
confidence: 85%
“…Then there exists a presheaf of E ∞ -ring spectra E G on theétale site of X ∧ mA , such that (1) E G satisfies homotopy descent: it is (locally) fibrant in the Jardine model structure [Jar00], [DHI04]. (2) For every formal affineétale open f : Spf(R) → X ∧ mA , the E ∞ -ring spectrum of sections E G (R) is weakly even periodic, with E G (R) 0 = R. There is an isomorphism…”
Section: Goerss and Hopkins [Gh04] Extended Work Of Hopkins And Millermentioning
confidence: 99%
“…[DHI,Proposition 3.1] A map F → G between locally fibrant simplicial presheaves is a weak equivalence if and only if given a commutative square…”
Section: Generalized Artin Stacksmentioning
confidence: 99%
“…Notons ensuite qu'un morphisme (étale) surjectif de schémas f : X → Y dans Sm/S induit une application surjective X(C) → Y (C) : si y ∈ Y (C), la fibre X y de f au-dessus de y est un schéma de type fini sur C et non vide, il possède un C-point (10) . Il en résulte que le foncteur ι −1 X est continu ; comme il commute aux limites projectives finies, on a bien un morphisme de sites (cf.…”
Section: L'application Raisonnableunclassified
“…[10] et [11]). Enfin, dans la section 6, on propose une définition d'une variante « naïve » de la catégorie SH T (S , I) : admettant une description très simple à partie de la catégorie homotopique pointée H • (S , I), cette catégorie s'avère être équivalente au quotient de SH T (S , I) par l'idéal de morphismes (de carré nul) constitué par les morphismes dits « stablement fantômes ».…”
unclassified