Hypercubes clustering: a machine learning method for efficiently finding common sub-trajectories in spatiotemporal space and constructing trajectories models for prediction
Abstract:Common sub-trajectory clustering is to find similar trajectory segments. Existing clustering methods tend to overlook many of the relevant sub-trajectories; others require a road network as input; all are significantly slowed down considerably by large datasets. This study proposes a novel machine learning approach, called Hypercubes clustering. Hypercubes clustering transforms trajectories into a set of Hypercubes. This study further applies Hypercubes clustering to solving the Estimated Time of Arrival (ETA)… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.