2024
DOI: 10.1002/mana.202300468
|View full text |Cite
|
Sign up to set email alerts
|

Hyperelliptic genus 3 curves with involutions and a Prym map

Paweł Borówka,
Anatoli Shatsila

Abstract: We characterize genus 3 complex smooth hyperelliptic curves that admit two additional involutions as curves that can be built from five points in with a distinguished triple. We are able to write down explicit equations for the curves and all their quotient curves. We show that, fixing one of the elliptic quotient curve, the Prym map becomes a 2:1 map and therefore the hyperelliptic Klein Prym map, constructed recently by the first author with A. Ortega, is also 2:1 in this case. As a by‐product we show an ex… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?