2021
DOI: 10.36227/techrxiv.14138618
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

HyperETA: An Estimated Time of Arrival Method based on Hypercube Clustering

Abstract: The Estimated Time of Arrival (ETA) that predict the travel time of a given GPS trajectory has been extensively used in route planning. Deep learning has been widely applied to ETA prediction. However, prediction tasks involve some challenges, such as small data size, low GPU’s precision, high training loss, and low accuracy. Herein, we present a new machine-learning algorithm called HyperETA for ETA prediction. HyperETA is based on a extraordinary clustering method, called Hypercube Clustering. We conducted e… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 11 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?