Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The generation, manipulation, storage, and detection of single photons play a central role in emerging photonic quantum information technology. Individual photons serve as flying qubits and transmit the relevant quantum information at high speed and with low losses, for example between individual nodes of quantum networks. Due to the laws of quantum mechanics, the associated quantum communication is fundamentally tap-proof, which explains the enormous interest in this modern information technology. On the other hand, stationary qubits or photonic states in quantum computers can potentially lead to enormous increases in performance through parallel data processing, to outperform classical computers in specific tasks when quantum advantage is achieved. In this review, we discuss in depth the great potential of semiconductor quantum dots in photonic quantum information technology. In this context, quantum dots form a key resource for the implementation of quantum communication networks and photonic quantum computers, because they can generate single photons on demand. Moreover, these solid-state quantum emitters are compatible with the mature semiconductor technology, so that they can be integrated comparatively easily into nanophotonic structures such as resonators and waveguide systems, which form the basis for quantum light sources and integrated photonic quantum circuits. After a thematic introduction, we present modern numerical methods and theoretical approaches to device design and the physical description of quantum dot devices. We then introduce modern methods and technical solutions for the epitaxial growth and for the deterministic nanoprocessing of quantum devices based on semiconductor quantum dots. Furthermore, we highlight the most promising device concepts for quantum light sources and photonic quantum circuits that include single quantum dots as active elements and discuss applications of these novel devices in photonic quantum information technology. We close with an overview of open issues and an outlook on future developments.
The generation, manipulation, storage, and detection of single photons play a central role in emerging photonic quantum information technology. Individual photons serve as flying qubits and transmit the relevant quantum information at high speed and with low losses, for example between individual nodes of quantum networks. Due to the laws of quantum mechanics, the associated quantum communication is fundamentally tap-proof, which explains the enormous interest in this modern information technology. On the other hand, stationary qubits or photonic states in quantum computers can potentially lead to enormous increases in performance through parallel data processing, to outperform classical computers in specific tasks when quantum advantage is achieved. In this review, we discuss in depth the great potential of semiconductor quantum dots in photonic quantum information technology. In this context, quantum dots form a key resource for the implementation of quantum communication networks and photonic quantum computers, because they can generate single photons on demand. Moreover, these solid-state quantum emitters are compatible with the mature semiconductor technology, so that they can be integrated comparatively easily into nanophotonic structures such as resonators and waveguide systems, which form the basis for quantum light sources and integrated photonic quantum circuits. After a thematic introduction, we present modern numerical methods and theoretical approaches to device design and the physical description of quantum dot devices. We then introduce modern methods and technical solutions for the epitaxial growth and for the deterministic nanoprocessing of quantum devices based on semiconductor quantum dots. Furthermore, we highlight the most promising device concepts for quantum light sources and photonic quantum circuits that include single quantum dots as active elements and discuss applications of these novel devices in photonic quantum information technology. We close with an overview of open issues and an outlook on future developments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.