(2017) 'Inelastic losses in radio-frequency-dressed traps for ultracold atoms. ', Physical review A., 96 (4). 042707.Further information on publisher's website:https://doi.org/10.1103/PhysRevA.96.042707Publisher's copyright statement:Reprinted with permission from the American Physical Society: Owens, Daniel J. Hutson, Jeremy M. (2017). Inelastic losses in radio-frequency-dressed traps for ultracold atoms. Physical Review A 96(4): 042707 c 2017 by the American Physical Society. Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modi ed, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society.Additional information:
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. We calculate the rates of inelastic collisions for ultracold alkali-metal atoms in radio-frequency-dressed traps, using coupled-channel scattering calculations on accurate potential energy surfaces. We identify a radiofrequency-induced loss mechanism that does not exist in the absence of radio frequency (rf) radiation. This mechanism is not suppressed by a centrifugal barrier in the outgoing channel, and can be much faster than spin relaxation, which is centrifugally suppressed. We explore the dependence of the rf-induced loss rate on singlet and triplet scattering lengths, hyperfine splittings, and the strength of the rf field. We interpret the results in terms of an adiabatic model of the collision dynamics, and calculate the corresponding nonadiabatic couplings. The loss rate can vary by 10 orders of magnitude as a function of singlet and triplet scattering lengths. 87 Rb is a special case, where several factors combine to reduce rf-induced losses; as a result, they are slow compared to spin-relaxation losses. For most other alkali-metal pairs, rf-induced losses are expected to be much faster and may dominate.