Purpose
Inflammation contributes to the development of meibomian gland dysfunction (MGD) under specific disease conditions, but the underlying mechanisms remain elusive. We examined whether lipopolysaccharide (LPS) induced a proinflammatory cytokine response and lipogenesis in human meibomian gland epithelial cells (HMGECs) and whether melatonin (MLT), a powerful anti-inflammatory regent in the eyes, could protect against LPS-induced disorders.
Methods
Human meibomian gland (MG) tissues and immortalized HMGECs were stained to identify Toll-like receptor (TLR) 4 and MLT receptors (MT
1
and MT
2
). HMGECs were pretreated with or without MLT and then stimulated with LPS. Then, TLR4 activation, cytokine levels, lipid synthesis, apoptosis, autophagy, and MAPK/NF-κB factor phosphorylation in HMGECs were analyzed.
Results
TLR4, MT
1
, and MT
2
were expressed in human MG acini and HMGECs. Pretreatment with MLT inhibited the TLR4/MyD88 signaling and attenuated proinflammatory cytokine response and lipogenesis in LPS-stimulated HMGECs, which manifested as decreased production of cytokines (IL-1β, IL-6, IL-8, and TNF-α), reduced lipid droplet formation, and downregulated expression of meibum lipogenic proteins (ADFP, ELOVL4, and SREBP-1). Phospho-histone H2A.X foci, lysosome accumulation, and cytoplasmic cleaved caspase 3/LC3B-II staining were increased in LPS-stimulated HMGECs, indicating enhanced cell death mediated by apoptosis and autophagy during LPS-induced lipogenesis. MLT downregulated cleaved caspase 3 levels and the Bax/Bcl-2 ratio to alleviate apoptosis and ameliorated the expression of Beclin 1 and LC3B-II to inhibit autophagy. The protective mechanisms of MLT include the inhibition of MAPK and NF-κB phosphorylation.
Conclusions
MLT attenuated lipogenesis, apoptosis, and autophagy in HMGECs induced by proinflammatory stimuli, indicating the protective potential of MLT in MGD.