Failure to protect total parenteral nutrition (TPN) from ambient light exacerbates the generation of peroxides, which affects blood glucose and plasma triacylglyceride (TG) in neonates. Based on the concept that the origin of adult diseases can be traced back to perinatal life, it was hypothesized that neonatal exposure to peroxides may affect energy availability later in life. Three-day-old guinea pigs, fitted with a jugular catheter, were fed regular chow (sham) Ϯ i. T he association between oxidative stress and characteristic features of the metabolic syndrome, such as diabetes, hypertension, and dyslipidemia, is well documented (1-6). Human (7) and animal studies (8,9) suggest that the origin of the metabolic syndrome can be traced back to perinatal life, a time when newborn infants are at greater risk of oxidative stress caused by weak antioxidant defenses (10 -12) or exposure to an oxidative environment or both (13-18). Several reports suggest that, in neonates, oxidative stress triggers the events that lead to programming of adult diseases (19 -22).Total parenteral nutrition (TPN) represents a source of oxidants in the form of peroxides that can be calibrated either by applying or not photoprotecting. The peroxides are derived from interactions between dissolved oxygen and electron donors such as lipid, amino acid, or ascorbic acid (23,24). The reaction is catalyzed by photoexcited riboflavin (24). Therefore, the main active agents participating in the generation of peroxides in TPN are ambient light [(ϩ)L] and multivitamin preparations (MVP) (23,24). Photoprotection [(Ϫ)L] of TPN reduces the levels of peroxides by close to 50% (23,25,26). Absence of photoprotection of TPN is associated in preterm newborn infants with higher urinary peroxide concentrations (16), higher blood pressure in girl babies (15), and greater blood glucose and plasma triacylglycerol concentrations (13). Hence, peroxides contaminating TPN solutions are not completely quenched by newborns infants and are thought to be an agent initiating metabolic perturbations. We questioned whether these peroxides are linked to metabolic consequences later in life.Based on the concept that neonatal oxidative stress may interfere with metabolic programming (27), we hypothesized that neonatal exposure to peroxides such as those generated in solutions of parenteral nutrition, induces a permanent modification in lipid and glucose metabolism especially lipogenesis and/or glycolysis. Perturbations in lipid and glucose metabolism, which are fuels for energy production, could have longterm consequences on growth and physical activity, thereby affecting global development. The aim of this study was to measure in adult guinea pigs metabolic responses and spontaneous physical activity after a brief neonatal exposure to i.v. oxidant molecules limited to the first wk of life. A second objective was to assess if these modifications were related to the infusion of peroxides.
MATERIALS AND METHODSExperimental design. The metabolic response and the levels...