Proceedings of the International Conference on Industrial Engineering and Operations Management
DOI: 10.46254/sa03.20220421
|View full text |Cite
|
Sign up to set email alerts
|

Hyperparameter Optimization of Deep Learning Model for Short-Term Electricity Demand Forecasting

Abstract: Short-term electricity demand forecasting represents a fundamental tool for decision-making by entities engaged in electricity management since it allows the development of strategies to meet variations in electricity demand in short periods. The accuracy of predictive models is an important factor for energy operations and the scheduling of energy generation sources to meet the demand at each instant. Intelligent models based on Recurrent Neural Networks (RNN) require hyperparameter adjustment. These models h… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 7 publications
0
0
0
Order By: Relevance