2022
DOI: 10.1007/978-3-031-16210-7_16
|View full text |Cite
|
Sign up to set email alerts
|

Hyperparameter Optimization of Deep Learning Models for EEG-Based Vigilance Detection

Abstract: ElectroEncephaloGraphy (EEG) signals have a nonlinear and complex nature and require the design of sophisticated methods for their analysis. Thus, Deep Learning (DL) models, which have enabled the automatic extraction of complex data features at high levels of abstraction, play a growing role in the field of medical science to help diagnose various diseases, and have been successfully used to predict the vigilance states of individuals. However,the performance of these models is highly sensitive to the choice … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 17 publications
0
0
0
Order By: Relevance