Frequent waterlogging disasters can have serious effects on regional ecology, food safety, and socioeconomic sustainable development. Early monitoring of waterlogging stress levels is vital for accurate production input management and reduction of crop production-related risks. In this study, a pot experiment on winter wheat was designed using three varieties and seven gradients of waterlogging stress. Hyperspectral imagery of the winter wheat canopy in the jointing stage, heading stage, flowering stage, filling stage, and maturation stage were measured and then classified. Wavebands of imaging data were screened. Waterlogging stress level was assessed by a combined harmonic analysis method, and application of this method at field scale was discussed preliminarily. Results show that compared to the k-nearest neighbor and support vector machine algorithms, the random forest algorithm is the best batch classification method for hyperspectral imagery of potted winter wheat. It can recognize waterlogging stress well in the wavebands of red absorption valley (RW: 640–680 nm), red-edge (RE: 670–737 nm), and near-infrared (NIR: 700–900 nm). In the RW region, amplitudes of the first three harmonic sub-signals (c1, c2, and c3) can be used as indexes to recognize the waterlogging stress level that each winter wheat variety undertakes. The third harmonic sub-signal amplitude c3 of the RE region is also suitable for judging stress levels of JM31 (one of the three varieties which is highly sensitive to water content). This study has important theoretical significance and practical application values related to the accurate control of waterlogging stress, and functions as a new method to monitor other types of environmental stress levels such as drought stress, freezing stress, and high-temperature stress levels.