Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper presents an advanced automatic number plate recognition (ANPR) system designed specifically for Qatar’s diverse license plate landscape and challenging environmental conditions. Leveraging the YOLOv8 deep learning model, particularly the YOLOv8s variant, we achieve state-of-the-art accuracy in both license plate detection and number recognition. Our innovative approach includes a comprehensive dataset enhancement technique that simulates adverse conditions, significantly improving the model’s robustness in real-world scenarios. We integrate edge computing using a Raspberry Pi with server-side processing, demonstrating an efficient solution for real-time ANPR applications. The system maintains greater than 93% overall performance across various environmental conditions, including night-time and rainy scenarios. We also explore the impact of various pre-processing techniques, including edge detection, k-mean thresholding, DBSCAN, and Gaussian mixture models, on the ANPR system’s performance. Our findings indicate that modern deep learning models like YOLOv8 are sufficiently robust to handle raw input images and do not significantly benefit from additional pre-processing. With its high accuracy and real-time processing capability, the proposed system represents a significant advancement in ANPR technology and is particularly suited for Qatar’s unique traffic management needs and smart city initiatives.
This paper presents an advanced automatic number plate recognition (ANPR) system designed specifically for Qatar’s diverse license plate landscape and challenging environmental conditions. Leveraging the YOLOv8 deep learning model, particularly the YOLOv8s variant, we achieve state-of-the-art accuracy in both license plate detection and number recognition. Our innovative approach includes a comprehensive dataset enhancement technique that simulates adverse conditions, significantly improving the model’s robustness in real-world scenarios. We integrate edge computing using a Raspberry Pi with server-side processing, demonstrating an efficient solution for real-time ANPR applications. The system maintains greater than 93% overall performance across various environmental conditions, including night-time and rainy scenarios. We also explore the impact of various pre-processing techniques, including edge detection, k-mean thresholding, DBSCAN, and Gaussian mixture models, on the ANPR system’s performance. Our findings indicate that modern deep learning models like YOLOv8 are sufficiently robust to handle raw input images and do not significantly benefit from additional pre-processing. With its high accuracy and real-time processing capability, the proposed system represents a significant advancement in ANPR technology and is particularly suited for Qatar’s unique traffic management needs and smart city initiatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.