2022
DOI: 10.1016/j.rsase.2021.100676
|View full text |Cite
|
Sign up to set email alerts
|

Hyperspectral remote sensing for foliar nutrient detection in forestry: A near-infrared perspective

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 71 publications
0
2
0
1
Order By: Relevance
“…Los productos de origen orgánico interaccionan de manera distinta a la radiación electromagnética, debido a su naturaleza (Singh et al 2022), por lo que no es posible comparar los resultados obtenidos en este estudio con otras especies; sin embargo, Cozzolino & Moron (2004) demostraron la eficiencia del uso de la espectroscopía visible y NIRS, para la predicción de nutrientes en especies de leguminosas.…”
Section: Resultados Y Discusiónunclassified
“…Los productos de origen orgánico interaccionan de manera distinta a la radiación electromagnética, debido a su naturaleza (Singh et al 2022), por lo que no es posible comparar los resultados obtenidos en este estudio con otras especies; sin embargo, Cozzolino & Moron (2004) demostraron la eficiencia del uso de la espectroscopía visible y NIRS, para la predicción de nutrientes en especies de leguminosas.…”
Section: Resultados Y Discusiónunclassified
“…In recent years, several studies have reported various ecophysiological information about plants that can be evaluated using spectral characteristics (reflectance and transmittance) of leaves and canopies (Singh et al 2022). However, in this field of study, most work has been conducted using not transmitted but reflected light spectra because reflected light can be measured from the sky using satellites or drones for large-scale canopies.…”
Section: Discussionmentioning
confidence: 99%
“…8 The hyperspectral data of leaves are as regarded as human fingerprints, which can be used to reveal the nutritional status of the plant and the difference between the species of plants. 9,10 Yang et al utilized hyperspectral imaging technology combined with a recognition model based on particle swarm optimization-extreme learning machine to identify eight tree species at the leaf level. 11 Hideaki et al developed an approach based on near infrared hyperspectral imaging (NIR-HSI) technology and deep convolutional neural network to identify 38 hardwood species with an accuracy of 90.5%.…”
Section: Introductionmentioning
confidence: 99%