To
optimize sensitivity, there has been an increasing interest
in the miniaturization of NMR detectors. In our lab, a stripline NMR
detector has been developed, which provides high resolution and is
scalable to a large range of sample volumes. These features make it
an ideal detector for hyphenated techniques. In this manuscript, we
demonstrate a stripline probe, which is designed for combining supercritical
fluid chromatography (SFC) experiments with NMR. It features a novel
stripline chip, designed to reduce the signal from the contact pads,
which results in an improved lineshape. An external lock circuit provides
stability over time to perform signal averaging or multidimensional
experiments. As proof of concept, we demonstrate the SFC-NMR technique
with this stripline probe using a mixture of cholesterol and cholestanol,
which is relevant for studying cerebrotendinous xanthomatosis. Additionally,
this probe makes it possible to record high-resolution spectra of
samples with a high spin density. This means that it is possible to
directly observe shifts due to the nuclear demagnetizing field in
the “homomolecular” case, which is challenging using
conventional probes due to broadening effects from radiation damping.