ObjectiveCellular, animal, and human epidemiological studies suggested that benzodiazepines increase the risk of cancer and cancer mortality. Obesity is also clearly linked to carcinogenesis. However, no human studies have examined benzodiazepine-associated carcinogenesis as assessed by changes in cancer biomarkers.
MethodsA total of 19 patients were recruited, and received a 6-week treatment of 0.5 mg lorazepam. The measured cancer biomarkers were angiopoietin-2 (ANG-2), soluble CD40 ligand, epidermal growth factor, endoglin, soluble Fas ligand (sFASL), heparin-binding EGF-like growth factor (HB-EGF), insulin-like growth factor binding protein, interleukin (IL)-6, IL-8, IL-18, plasminogen activator inhibitor (PLGF), placental growth factor, transforming growth factor (TGF)-α, tumor necrosis factor (TNF)-α, urokinase-type plasminogen (uPA), vascular endothelial growth factor (VEGF)-A, VEGF-C, and VEGF-D.
ResultsSix cancer biomarkers were significantly increased in all patients as a whole. The subgroup analysis revealed a distinct pattern of change. Overweight patients showed a significant increase in 11 cancer biomarkers, including ANG-2, sFASL, HB-EGF, IL-8, PLGF, TGF-α, TNF-α, uPA, VEGF-A, VEGF-C, and VEGF-D. However, normal-weight patients did not show any changes in cancer biomarkers.
ConclusionAdiposity may have primed the carcinogenic potential, leading to lorazepam-associated carcinogenesis in overweight patients. Epidemiological studies addressing this issue should consider the potential modulator contributing to benzodiazepine-associated carcinogenesis.