Platinum‐based therapies have revolutionized the treatment of high‐grade serous ovarian cancer (HGSOC). However, high rates of disease recurrence and progression remain a major clinical concern. Impaired mitochondrial function and dysregulated reactive oxygen species (ROS), hallmarks of cancer, hold potential as therapeutic targets for selectively sensitizing cisplatin treatment. Here, we uncover an oncogenic role of the palmitoyltransferase ZDHHC12 in regulating mitochondrial function and ROS homeostasis in HGSOC cells. Analysis of The Cancer Genome Atlas (TCGA) ovarian cancer data revealed significantly elevated ZDHHC12 expression, demonstrating the strongest positive association with ROS pathways among all ZDHHC enzymes. Transcriptomic analysis of independent ovarian cancer datasets and the SNU119 cell model corroborated this association, highlighting a strong link between ZDHHC12 expression and signature pathways involving mitochondrial oxidative metabolism and ROS regulation. Knockdown of ZDHHC12 disrupted this association, leading to increased cellular complexity, ATP levels, mitochondrial activity, and both mitochondrial and cellular ROS. This dysregulation, achieved by the siRNA knockdown of ZDHHC12 or treatment with the general palmitoylation inhibitor 2BP or the fatty acid synthase inhibitor C75, significantly enhanced cisplatin cytotoxicity in 2D and 3D spheroid models of HGSOC through ROS‐mediated mechanisms. Markedly, ZDHHC12 inhibition significantly augmented the anti‐tumor activity of cisplatin in an ovarian cancer xenograft tumor model, as well as in an ascites‐derived organoid line of platinum‐resistant ovarian cancer. Our data suggest the potential of ZDHHC12 as a promising target to improve the outcome of HGSOCs in response to platinum‐based chemotherapy.