Ascending visual projections similar to the mammalian thalamocortical pathway are found in a wide range of vertebrate species, but their homologous relationship is debated. To get better insights into their evolutionary origin, we examined the developmental origin of a visual relay nucleus in zebrafish (a teleost fish). Similarly to the tectofugal visual thalamic nuclei in amniotes, the lateral part of the preglomerular complex (PG) in teleosts receives tectal information and projects to the pallium.However, our cell lineage study reveals that the majority of PG cells are derived from the midbrain, not from the forebrain. We also demonstrate that the PG projection neurons develop gradually until juvenile stage, unlike the thalamic projection neurons.Our data suggest that teleost PG is not homologous to the amniote thalamus and that thalamocortical-like projections can evolve from a non-forebrain cell population. Thus, sensory pathways in vertebrate brains exhibit a surprising degree of variation.ventral telencephalon containing the striatum; Figure 1; amphibians; Th SPa), with little projections to the pallium (Kicliter, 1979; Neary and Northcutt, 1983; Wilczynski and Northcutt, 1983; Butler, 1994a).Outside of tetrapods, brain structures are highly divergent compared to amniotes, and thus it is even more complicated to draw an evolutionary scenario. Although teleosts also have sensory afferents to the pallium, the morphology of the teleost pallium is very different from that of tetrapods, as the developmental processes are different (evagination in tetrapods versus eversion in teleosts). Different authors have proposed several hypotheses concerning which part of the teleost pallium would correspond to the mammalian neocortex (Braford, 1995; Wullimann and Mueller, 2004;Northcutt, 2006;Yamamoto et al., 2007; Mueller et al., 2011). Recently, cell lineage studies of the zebrafish pallium have modified the classical view of the eversion model (Dirian et al., 2014;Furlan et al., 2017), and we have proposed a new interpretation on the pallial homology .In teleosts, the controversy is not only on the pallial homology. It has also been debated whether or not the structure giving rise to the major pallial projections is homologous to the tetrapod thalamus (Wullimann and Rink, 2002;Northcutt, 2006;Yamamoto and Ito, 2008; Mueller, 2012). This structure is named the preglomerular complex (PG; Figure 1; teleosts; PG Pal). In order to determine the evolutionary scenario of sensory pathways in bony vertebrates (Osteichthyes), it is important to investigate whether or not the teleost PG is homologous to the amniote thalamus.As for the controversy on the pallial homology, different authors claim different hypotheses. On the one hand, based on descriptive embryology, the teleost PG has been considered to originate from the basal portion of the diencephalon, the posterior tuberculum (Bergquist, 1932; Braford and Northcutt, 1983; Butler and Hodos, 2005; 6