The high demand for organs in kidney transplantation and the expansion of the donor pool have led to the widespread implementation of machine perfusion technologies. In this study, we aim to provide an up-to-date systematic review of the developments in this expanding field over the past 10 years, with the aim of answering the question: “which perfusion technique is the most promising technique in kidney transplantation?” A systematic review of the literature related to machine perfusion in kidney transplantation was performed. The primary outcome measure was delayed graft function (DGF), and secondary outcomes included rates of rejection, graft survival, and patient survival rates after 1 year. Based on the available data, a meta-analysis was performed. The results were compared with data from static cold storage, which is still the standard of care in many centers worldwide. A total of 56 studies conducted in humans were included, and 43 studies reported outcomes of hypothermic machine perfusion (HMP), with a DGF rate of 26.4%. A meta-analysis of 16 studies showed significantly lower DGF rates in the HMP group compared to those of static cold storage (SCS). Five studies reported outcomes of hypothermic machine perfusion + O2, with an overall DGF rate of 29.7%. Two studies explored normothermic machine perfusion (NMP). These were pilot studies, designed to assess the feasibility of this perfusion approach in the clinical setting. Six studies reported outcomes of normothermic regional perfusion (NRP). The overall incidence of DGF was 71.5%, as it was primarily used in uncontrolled DCD (Maastricht category I-II). Three studies comparing NRP to in situ cold perfusion showed a significantly lower rate of DGF with NRP. The systematic review and meta-analysis provide evidence that dynamic preservation strategies can improve outcomes following kidney transplantation. More recent approaches such as normothermic machine perfusion and hypothermic machine perfusion + O2 do show promising results but need further results from the clinical setting. This study shows that the implementation of perfusion strategies could play an important role in safely expanding the donor pool.