In various mammalian species, including humans, water restriction leads to an acute increase in urinary sodium excretion. This process, known as dehydration natriuresis, helps prevent further accentuation of hypernatremia and the accompanying rise in extracellular tonicity. Serum-and glucocorticoid-inducible kinase (Sgk1), which is expressed in the renal medulla, is regulated by extracellular tonicity. However, the mechanism of its regulation and the physiological role of hypertonicity-induced SGK1 gene expression remain unclear. Here, we identified a tonicity-responsive enhancer (TonE) upstream of the rat Sgk1 transcriptional start site. The transcription factor NFAT5 associated with TonE in a tonicity-dependent fashion in cultured rat renal medullary cells, and selective blockade of NFAT5 activity resulted in suppression of the osmotic induction of the Sgk1 promoter. In vivo, water restriction of rats or mice led to increased urine osmolality, increased Sgk1 expression, increased expression of the type A natriuretic peptide receptor (NPR-A), and dehydration natriuresis. In cultured rat renal medullary cells, siRNA-mediated Sgk1 knockdown blocked the osmotic induction of natriuretic peptide receptor 1 (Npr1) gene expression. Furthermore, Npr1 -/-mice were resistant to dehydration natriuresis, which suggests that Sgk1-dependent activation of the NPR-A pathway may contribute to this response. Collectively, these findings define a specific mechanistic pathway for the osmotic regulation of Sgk1 gene expression and suggest that Sgk1 may play an important role in promoting the physiological response of the kidney to elevations in extracellular tonicity.
IntroductionPersistent hypertonicity, typically reflecting a high extracellular sodium concentration, stresses mammalian cells due to the ensuing osmotic efflux of water that shrinks the cells and concentrates their contents. Under most conditions, the concentration of extracellular sodium in mammals is controlled primarily through regulation of water metabolism. As extracellular sodium and plasma tonicity rise, the thirst mechanism is activated, and secretion of the neurohypophyseal hormone vasopressin into plasma increases. Vasopressin binds to its cognate receptors in the collecting duct of the kidney, resulting in increased water retention.Following short-term water restriction, several mammals demonstrate an acute increase in urinary sodium excretion that is independent of changes in water metabolism. This response, termed dehydration natriuresis (1-11), plays an important role in preventing further accentuation of hypernatremia and the accompanying rise in extracellular tonicity. A similar natriuresis is seen following infusion of hypertonic saline (12). Investigations to date have suggested a role for central versus peripheral osmoreceptors and blood-borne versus neural effectors in contributing to dehydration-induced natriuresis; however, the precise mechanism(s) underlying this natriuresis remains undefined.