Progression through the cell cycle is driven by bistable switches—specialized molecular circuits that govern transitions from one cellular state to another. Although the mechanics of bistable switches are relatively well understood, it is less clear how cells integrate multiple sources of molecular information to engage these switches. Here, we describe how bistable switches act as hubs of information processing and examine how variability, competition, and inheritance of molecular signals determine the timing of the Rb‐E2F bistable switch that controls cell cycle entry. Bistable switches confer both robustness and plasticity to cell cycle progression, ensuring that cell cycle events are performed completely and in the correct order, while still allowing flexibility to cope with ongoing stress and changing environmental conditions.