Please check the document version of this publication:• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement: The electron energy distribution function ͑EEDF͒ with respect to the hysteresis loop of an inductively coupled argon discharge has been studied experimentally. Contrary to H mode, knowledge of EEDF in E mode is still limited, and an elaborate EEDF measurement with regard to power and pressure for this mode is presented. The Langmuir probe measurements reveal two regions with distinct EEDFs in E mode, which might be a critical missing factor in explaining the unresolved hysteresis and mode transition phenomenon of inductive discharges. Furthermore, a Poynting vector representation has been used to explain the power coupling in an inductive discharge, where ͑azimuthal͒ e component is proposed to be dominant in the "hybrid mode" region.