In this study, we investigated the variations in production performance, health status, and gut microbiota of meat rabbits raised in the semi-confined barn during summer and winter. Compared to summer, rabbits reared in winter possessed significantly higher slaughter weight and carcass weight. Rabbits fed in the summer were more vulnerable to different stressors, which led to increased protein levels of HSP90, IL-1α, IL-1β, IL-2, and concentrations of MDA, but declined GSH and SOD activities. Additionally, significant differences in gut microbial communities were observed. Compared to the winter, rabbits fed in the summer had significantly lower and higher alpha and beta diversity. Both Firmicutes and Verrucomicrobiota were the dominant phyla, and they accounted for greater proportions in the winter than in the summer. At lower microbial taxa levels, several seasonal differentially enriched microbes were identified, such as Akkermansia muciniphila, the Oscillospiraceae NK4A214 group, the Christensenellaceae R-7 group, Alistipes, and Muribaculaceae. Functional capacities linked to microbial proliferation, nutrient metabolism, and environmental adaptive responses exhibited significantly different abundances between summer and winter. Moreover, strong interactions among different indicators were presented. Based on our findings, we not only proposed several potential strategies to ameliorate the undesirable effects of seasonal changes on the productivity and health of meat rabbits but also underscored the directions for future mechanistic studies of adaptation physiology.