Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Amaranthus palmeri S. Watson (Palmer amaranth) is an invasive agricultural weed that has quickly risen from a state of relative obscurity to now being globally regarded as one of the most economically destructive and difficult to manage weed species. It is now found in more than 45 countries where it poses a serious threat to agricultural production systems. Amaranthus palmeri is known to aggressively compete against crop plants for resources such as light, space, nutrients and soil moisture, all of which can result in significant crop yield reduction or even lead to crop failure. It has also been reported that A. palmeri is highly prone to evolve herbicide resistance; this makes management exceedingly challenging. Whilst there have been several control approaches introduced to manage the spread and impact of A. palmeri, many of them require more specific and focused research for their successful local and widespread application. In this regard, this global review explores the species’ biology and global distribution patterns, together with previous and current management strategies. It also explores and identifies promising areas of research that still require further investigation to more confidently assist in the control and containment of this globally concerning weed.
Amaranthus palmeri S. Watson (Palmer amaranth) is an invasive agricultural weed that has quickly risen from a state of relative obscurity to now being globally regarded as one of the most economically destructive and difficult to manage weed species. It is now found in more than 45 countries where it poses a serious threat to agricultural production systems. Amaranthus palmeri is known to aggressively compete against crop plants for resources such as light, space, nutrients and soil moisture, all of which can result in significant crop yield reduction or even lead to crop failure. It has also been reported that A. palmeri is highly prone to evolve herbicide resistance; this makes management exceedingly challenging. Whilst there have been several control approaches introduced to manage the spread and impact of A. palmeri, many of them require more specific and focused research for their successful local and widespread application. In this regard, this global review explores the species’ biology and global distribution patterns, together with previous and current management strategies. It also explores and identifies promising areas of research that still require further investigation to more confidently assist in the control and containment of this globally concerning weed.
The invasive weed Amaranthus palmeri is spreading throughout Spain, with Catalonia being one of the most affected regions. For this species, acetolactate synthase‐inhibiting herbicide‐resistant populations have been reported, and now glyphosate resistance is also suspected. Glyphosate targets and inhibits the enzyme 5‐enolpyruvylshikimate‐3‐phosphate synthase (EPSPS), but A. palmeri has evolved different resistant mechanisms leading to plant survival. One of the most effective is the EPSPS overexpression due to copy number variation (CNV). Gene copies accumulate within the EPSPS cassette that is an extrachromosomal circular DNA displaying unique structural polymorphisms. This study aims to determine the response to glyphosate of a suspected resistant population collected from a roadside and investigate the resistance mechanism involved. The herbicide bioassay confirmed that 40% of the plants survived glyphosate applied at 540 g a.i. ha−1. No known mutations endowing glyphosate resistance were found at EPSPS amongst confirmed resistant plants, while in most of them (70%) specific molecular markers revealed the presence of the EPSPS cassette. All these results indicate that this population is glyphosate resistant and it is very likely that the EPSPS gene CNV is the main resistance mechanism. This is the first case of glyphosate resistance in A. palmeri in Europe whose introduction is likely due to importation of contaminated seed with glyphosate‐resistant Palmer amaranth from the Americas. This introduction poses a significant danger to summer crops in our continent.
Background The Amaranthus genus contains at least 20 weedy and invasive species, including Amaranthus palmeri (palmer’s amaranth) and Amaranthus tuberculatus (tall waterhemp), two species of regulatory concern in North America, impacting production and yield in crops like corn, soybean and cotton. Amaranthus tuberculatus is regulated in Canada with limited establishment, while current climate models predict a range expansion of A. palmeri impacting crop growing areas in Ontario, Quebec and Manitoba. Since many Amaranthus species are similar in their morphology, especially at the seed stage, this demands the development of additional methods that can efficiently aid in the detection and identification of these species. Protein biotyping using Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) has been traditionally used to identify microorganism species, races and pathotypes. Major protein fractions extracted from an organism, ionized and run through a biotyper using mass spectrometry, result in protein spectra that represent a fingerprint at the species or lower taxonomic rank, providing an efficient molecular diagnostics method. Here we use a modified protein biotyping protocol to extract major protein fractions from seeds of the family Brassicaceae to test our protocol, and then implemented the standardized approach in seeds from Amaranthus species. We then created a database of Amaranthus protein spectra that can be used to test blind samples for a quick identification of species of concern. Results We generated a protein spectra database with 16 Amaranthus species and several accessions per species, spanning target species of regulatory concern and species which are phylogenetically related or easily confused at the seed stage due to phenotypic plasticity. Testing of two Amaranthus blind sample seed sets against this database showed accuracies of 100% and 87%, respectively. Conclusions Our method is highly efficient in identifying Amaranthus species of regulatory concern. The mismatches between our protein biotyping approach and phenotypic identification of seeds are due to absence of the species in the database or close phylogenetic relationship between the species. While A. palmeri cannot be distinguished from A. watsonii, there is evidence these two species have the same native range and are closely related.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.