The three-dimensional view of molecules at the atomic level provided by X-ray crystallography is not only extremely informative but is also easily and intuitively understood by humans, who very much rely on their vision. However, unlike microscopy, this technique does not directly yield an image. The structural model cannot be directly calculated from the diffraction data, as only the intensities of scattered beams and not their phases are experimentally accessible. In order to obtain the 3-dimensional structure phases have to be obtained by either additional experimental or computational methods. This is known as the phase problem in crystallography. In this manuscript we provide an overview of major milestones along the quest for the lost phases.KEYWORDS: phase problem; constraints; structure factors; Fourier maps; search; minimization; maximum-likelihood; optimization; restraints; X-rays. RESUMEN: La cristalografía proporciona una visión tridimensional de las moléculas a un nivel de detalle atómico, que no sólo resulta muy informativa sino que además puede ser fácil e intuitivamente comprendida por seres tan predominantemente visuales como solemos ser los humanos. Sin embargo, al contrario que la microscopía, esta técnica no ofrece directamente una imagen y el modelo estructural no puede calcularse directamente a partir de los datos de difracción, ya que solamente las intensidades de los rayos difractados y no sus fases son accesibles a la medida experimental. Para determinar la estructura tridimensional las fases deben ser obtenidas por medio de métodos adicionales, bien experimentales o computacionales. Esto constituye el problema de la fase en cristalografía. En este artículo ofreceremos una visión general de los principales hitos en la búsqueda de las fases perdidas.PALABRAS CLAVE: problema de la fase; constricciones; factores de estructura; mapas de Fourier; métodos de búsqueda; minimización; máxima verosimilitud; optimización; restricciones; rayos-X.