Background. Data visualization is increasingly important in genomics, enabling researchers to uncover inheritance and recombination patterns across generations. While most existing tools focus on ancestry prediction, they lack functionality for analyzing known ancestries in controlled settings, such as determining parental contributions to offspring genomes. To address this gap, I developed pepa, a lightweight, modular tool that visualizes and quantifies genomic inheritance, designed for beginner and advanced users. Results. pepa is a program for processing VCF files, assigning ancestries to SNPs, and clustering them into biologically meaningful regions. It generates human-readable comparison tables and visualizes inheritance patterns with chromosome paintings through R. Tested on fission yeast, pepa revealed non-uniform recombination patterns, with chromosomes largely inherited from one parent and seemingly random recombination. Quantitative analyses showed differences in parental contributions at the nucleotide and gene levels, with some offspring inheriting similar percentages from parents. However, the painted chromosomes revealed that even offspring with similar percentages from one parent rarely inherit the same genomic region, highlighting the importance of this tool in drawing biologically meaningful insights. Conclusion. pepa provides an accessible and powerful solution for analyzing genomic inheritance, bridging experimental and computational biology. Its modular design and minimal dependencies allow adaptation to diverse organisms, facilitating intuitive visualization and quantitative insights into recombination dynamics.