Rhizodeposits, root exudates, and root border cells are vital components of the rhizosphere that significantly affect root colonization capacity and multiplication of rhizosphere microbes, as well as secretion of organic bioactive compounds. The rhizosphere is an ecological niche, in which beneficial bacteria compete with other microbiota for organic carbon compounds and interact with plants through root colonization activity to the soil. Some of these root-colonizing beneficial rhizobacteria also colonize endophytically and multiply inside plant roots. In the rhizosphere, these components contribute to complex physiological processes, including cell growth, cell differentiation, and suppression of plant pathogenic microbes. Understanding how rhizodeposits, root exudates, and root border cells interact in the rhizosphere in the presence of rhizobacterial populations is necessary to decipher their synergistic role for the improvement of plant health. This review highlights the diversity of plant growth-promoting rhizobacteria (PGPR) genera, their functions, and the interactions with rhizodeposits in the rhizosphere.Agriculture 2019, 9, 142 2 of 13 in the rhizosphere [12,13], and these interactions that influence plant growth and crop yields [14] can be root-root, root-insect, and root-microbe interactions [15]. The role of the rhizosphere is pivotal for plant growth-promotion, nutrition, and crop quality [16] because of the importance of plant-microbe interactions in the rhizosphere carbon sequestration, nutrient cycling, and ecosystem functioning [17]. In addition, the rhizosphere is where plant roots communicate with beneficial rhizobacteria for energy and nutrition. Plant growth-promoting rhizobacteria (PGPR) may affect plant growth, development, and disease suppression by one or more direct or indirect mechanisms. Bacterial genera such as Bacillus and Pseudomonas have been extensively studied and utilized as biocontrol agents, biofertilizers, and also have been shown to trigger induced systemic resistance (ISR) [18][19][20][21][22][23][24]. In this review, we discuss the importance, functions, and effects of root-derived organic molecules secreted in the rhizosphere and their interactions with plant growth-promoting rhizobacteria (PGPR) for enhancing plant growth and biological control of plant pathogens.
PGPR Diversity in the RhizosphereThe plant rhizosphere contains diverse rhizobacterial species with the potential to enhance plant growth and biological control activity. PGPR genera present in the rhizosphere include Agrobacterium,