Cysteine and methionine availability influences many processes in the cell. In bacteria, transcription of the specific genes involved in the synthesis of these two amino acids is usually regulated by different mechanisms or regulators. Pathways for the synthesis of cysteine and methionine and their interconversion were experimentally determined for Lactococcus lactis, a lactic acid bacterium commonly found in food. A new gene, yhcE, was shown to be involved in methionine recycling to cysteine. Surprisingly, 18 genes, representing almost all genes of these pathways, are under the control of a LysR-type activator, FhuR, also named CmbR. DNA microarray experiments showed that FhuR targets are restricted to this set of 18 genes clustered in seven transcriptional units, while cysteine starvation modifies the transcription level of several other genes potentially involved in oxidoreduction processes. Purified FhuR binds a 13-bp box centered 46 to 53 bp upstream of the transcriptional starts from the seven regulated promoters, while a second box with the same consensus is present upstream of the first binding box, separated by 8 to 10 bp. O-Acetyl serine increases FhuR binding affinity to its binding boxes. The overall view of sulfur amino acid metabolism and its regulation in L. lactis indicates that CysE could be a master enzyme controlling the activity of FhuR by providing its effector, while other controls at the enzymatic level appear to be necessary to compensate the absence of differential regulation of the genes involved in the interconversion of methionine and cysteine and other biosynthesis genes.Sulfur is a constituent of many indispensable components of the cell, such as cysteine, methionine, thiamine, biotin, lipoic acid, coenzyme A, etc. Among these compounds, cysteine has a central role, since its de novo synthesis represents the main pathway of sulfur acquisition in microorganisms and plants. Cysteine is thus the principal metabolite from which most sulfur-containing compounds are built. It is also an essential amino acid of the catalytic domain of universal proteins having iron-sulfur clusters, such as cytochromes and aconitase. Cysteine also plays a central role in protein folding, assembly, and stability via the formation of disulfide bounds. Moreover, cysteine-derived proteins, such as thioredoxin and glutathione, play a central role in the protection against oxidative stress. The second sulfur amino acid, methionine, is a key compound controlling the initiation of translation and is crucial to a variety of methyltransferase reactions.As a result of the essential roles in metabolism, cysteine and methionine supply might be limiting for bacterial growth in different situations of importance for humans, such as pathogenic events or fermentation processes. For example, methionine availability is limiting for growth of group B streptococci in plasma (65). Sulfur amino acid biosynthesis genes have been characterized as virulence factors in Brucella melitensis (48), Haemophilus parasuis (36), and Salmonel...