Dynamical quantum groups were introduced by Etingof and Varchenko in connection with the dynamical quantum Yang-Baxter equation, and measured quantum groupoids were introduced by Enock, Lesieur and Vallin in their study of inclusions of type II 1 factors. In this article, we associate to suitable dynamical quantum groups, which are a purely algebraic objects, Hopf C˚-bimodules and measured quantum groupoids on the level of von Neumann algebras. Assuming invariant integrals on the dynamical quantum group, we first construct a fundamental unitary which yields Hopf bimodules on the level of C˚-algebras and von Neumann algebras. Next, we assume properness of the dynamical quantum group and lift the integrals to the operator algebras. In a subsequent article, this construction shall be applied to the dynamical SU q p2q studied by Koelink and Rosengren.