RAF is a critical effector of the small GTPase RAS in normal and malignant cells. Despite intense scrutiny, the mechanism regulating RAF activation remains partially understood. Here, we show that the scaffold KSR (kinase suppressor of RAS), a RAF homolog known to assemble RAF/MEK/ERK complexes, induces RAF activation in Drosophila by a mechanism mediated by its kinase-like domain, but which is independent of its scaffolding property or putative kinase activity. Interestingly, we found that KSR is recruited to RAF prior to signal activation by the RAF-binding protein CNK (connector enhancer of KSR) in association with a novel SAM (sterile ␣ motif) domain-containing protein, named Hyphen (HYP). Moreover, our data suggest that the interaction of KSR to CNK/HYP stimulates the RAS-dependent RAF-activating property of KSR. Together, these findings identify a novel protein complex that controls RAF activation and suggest that KSR does not only act as a scaffold for the MAPK (mitogen-activated protein kinase) module, but may also function as a RAF activator. By analogy to catalytically impaired, but conformationally active B-RAF oncogenic mutants, we discuss the possibility that KSR represents a natural allosteric inducer of RAF catalytic function.[Keywords: RAF activation; RAS/MAPK signaling; SAM domain; scaffold proteins] Supplemental material is available at http://www.genesdev.org.