The chirality of substituents on an amino acid can significantly change its mode of binding to a metal ion, as shown here experimentally by traveling wave ion mobility spectrometry-mass spectrometry (TWIMS-MS) of different proline isomeric molecules complexed with alkali metal ions. Baseline separation of the cis- and trans- forms of both hydroxyproline and fluoroproline was achieved using TWIMS-MS via metal ion cationization (Li(+), Na(+), K(+), and Cs(+)). Density functional theory calculations indicate that differentiation of these diastereomers is a result of the stabilization of differing metal-complexed forms adopted by the diastereomers when cationized by an alkali metal cation, [M + X](+) where X = Li, Na, K, and Cs, versus the topologically similar structures of the protonated molecules, [M + H](+). Metal-cationized trans-proline variants exist in a linear salt-bridge form where the metal ion interacts with a deprotonated carboxylic acid and the proton is displaced onto the nitrogen atom of the pyrrolidine ring. In contrast, metal-cationized cis-proline variants adopt a compact structure where the carbonyl of the carboxylic acid, nitrogen atom, and if available, the hydroxyl and fluorine substituent solvate the metal ion. Experimentally, it was observed that the resolution between alkali metal-cationized cis- and trans-proline variants decreases as the size of the metal ion increases. Density functional theory demonstrates that this is due to the decreasing stability of the compact charge-solvated cis-proline structure with increased metal ion radius, likely a result of steric hindrance and/or weaker binding to the larger metal ion. Furthermore, the unique structures adopted by the alkali metal-cationized cis- and trans-proline variants results in these molecules having significantly different quantum mechanically calculated dipole moments, a factor that can be further exploited to improve the diastereomeric resolution when utilizing a drift gas with a higher polarizability constant.