optix, a gene essential and sufficient for eye development in Drosophila melanogaster, also plays important roles in the development of both the structure and pigmentation of butterfly wing scales. In particular, optix regulates wing scale lower lamina thickness and ommochrome pigment synthesis. Here we explore the role of optix in wing pattern development of Bicyclus anynana butterflies by examining its expression using immunostainings and testing its function via CRISPR-Cas9. We found Optix to be expressed in multiple domains, most prominently in the orange ring of the eyespots and in other scattered orange scales, and to regulate the pigmentation and the development of the upper lamina of the orange scales. We further explored the interaction of Optix with Spalt, a protein involved in the development of black scales in the eyespots, and expressed adjacent to the Optix domain. CRISPR knockouts of optix or spalt, followed by immunostainings, showed that Spalt represses optix expression in cells of the central black region of the eyespot. This regulatory interaction mimics that found in the anterior compartment of the wing disc where both genes respond to Decapentaplegic (Dpp) signaling and play a role in venation patterning. Using in situ hybridizations we show that dpp is expressed in the center of the eyespots and propose that this same circuit might have been recruited for eyespot development where Decapentaplegic acts as a central morphogen, activating optix and spalt at different concentration thresholds, and where spalt cross-regulates optix resulting in the formation of a sharp boundary between the two eyespot color rings.