Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In anticipation of the upcoming Euclid Wide and Deep Surveys, we present optical emission-line predictions at intermediate redshifts from 0.4 to 2.5. Our approach combines a mock light cone from the Gaea semi-analytic model with advanced photoionisation models to construct emission-line catalogues. This allows us to self-consistently model nebular emission from H ii regions around young stars, and, for the first time with a semi-analytic model, narrow-line regions of active galactic nuclei (AGN) and evolved stellar populations. Gaea Mpc $, marks the largest volume this set of models has been applied to. We validate our methodology against observational and theoretical data at low redshift. Our analysis focuses on seven optical emission lines: Halpha , Hbeta S ii N ii O i O iii 5007$, and O ii 3727, 3729$. In assessing selection bias, we find that it will predominantly observe line-emitting galaxies, which are massive (stellar mass $ solarmass $), star-forming (specific star-formation rate $> 10^ yr^ $), and metal-rich (oxygen-to-hydrogen abundance $ logten(O/H)+12 > 8$). We provide percentages of emission-line populations in our underlying Gaea sample with a mass resolution limit of $10^ solarmass $ and an $H$-band magnitude cut of 25. We compare results with and without an estimate of interstellar dust attenuation, which we model using a Calzetti law with a mass-dependent scaling. According to this estimate, the presence of dust may decrease observable percentages by a further 20-30<!PCT!> with respect to the overall population, which presents challenges for detecting intrinsically fainter lines. We predict to observe around 30--70<!PCT!> of Halpha - N ii S ii -, and O iii -emitting galaxies at redshift below 1. At higher redshift, these percentages decrease below 10<!PCT!>. Hbeta O ii and O i emission are expected to appear relatively faint, thus limiting observability to at most 5<!PCT!> at the lower end of their detectable redshift range, and below 1<!PCT!> at the higher end. This is the case both for these lines individually and in combination with other lines. For galaxies with line emission above the flux threshold in the Euclid Deep Survey, we find that BPT diagrams can effectively distinguish between different galaxy types up to around redshift 1.8, attributed to the bias toward metal-rich systems. Moreover, we show that the relationships of Halpha and O iii +Hbeta to the star-formation rate, as well as the O iii -AGN luminosity relation, exhibit minimal, if any, changes with increasing redshift when compared to local calibrations. Based on the line ratios $ N ii /H N ii O ii $, and $ N ii S ii $, we further propose novel redshift-invariant tracers for the black hole accretion rate-to-star formation rate ratio. Lastly, we find that commonly used metallicity estimators display gradual shifts in normalisations with increasing redshift, while maintaining the overall shape of local calibrations. This is in tentative agreement with recent JWST data.
In anticipation of the upcoming Euclid Wide and Deep Surveys, we present optical emission-line predictions at intermediate redshifts from 0.4 to 2.5. Our approach combines a mock light cone from the Gaea semi-analytic model with advanced photoionisation models to construct emission-line catalogues. This allows us to self-consistently model nebular emission from H ii regions around young stars, and, for the first time with a semi-analytic model, narrow-line regions of active galactic nuclei (AGN) and evolved stellar populations. Gaea Mpc $, marks the largest volume this set of models has been applied to. We validate our methodology against observational and theoretical data at low redshift. Our analysis focuses on seven optical emission lines: Halpha , Hbeta S ii N ii O i O iii 5007$, and O ii 3727, 3729$. In assessing selection bias, we find that it will predominantly observe line-emitting galaxies, which are massive (stellar mass $ solarmass $), star-forming (specific star-formation rate $> 10^ yr^ $), and metal-rich (oxygen-to-hydrogen abundance $ logten(O/H)+12 > 8$). We provide percentages of emission-line populations in our underlying Gaea sample with a mass resolution limit of $10^ solarmass $ and an $H$-band magnitude cut of 25. We compare results with and without an estimate of interstellar dust attenuation, which we model using a Calzetti law with a mass-dependent scaling. According to this estimate, the presence of dust may decrease observable percentages by a further 20-30<!PCT!> with respect to the overall population, which presents challenges for detecting intrinsically fainter lines. We predict to observe around 30--70<!PCT!> of Halpha - N ii S ii -, and O iii -emitting galaxies at redshift below 1. At higher redshift, these percentages decrease below 10<!PCT!>. Hbeta O ii and O i emission are expected to appear relatively faint, thus limiting observability to at most 5<!PCT!> at the lower end of their detectable redshift range, and below 1<!PCT!> at the higher end. This is the case both for these lines individually and in combination with other lines. For galaxies with line emission above the flux threshold in the Euclid Deep Survey, we find that BPT diagrams can effectively distinguish between different galaxy types up to around redshift 1.8, attributed to the bias toward metal-rich systems. Moreover, we show that the relationships of Halpha and O iii +Hbeta to the star-formation rate, as well as the O iii -AGN luminosity relation, exhibit minimal, if any, changes with increasing redshift when compared to local calibrations. Based on the line ratios $ N ii /H N ii O ii $, and $ N ii S ii $, we further propose novel redshift-invariant tracers for the black hole accretion rate-to-star formation rate ratio. Lastly, we find that commonly used metallicity estimators display gradual shifts in normalisations with increasing redshift, while maintaining the overall shape of local calibrations. This is in tentative agreement with recent JWST data.
We present a catalog of optical and infrared (NIR) identifications (ID) of X-ray sources in the AKARI North Ecliptic Pole (NEP) deep field detected with Chandra covering $ $ and with 0.5-2 keV flux limits ranging between $ The optical/NIR counterparts of the X-ray sources were taken from our Hyper Suprime Cam (HSC)/Subaru and Wide-Field InfraRed Camera (WIRCam)/Canada-France-Hawaii Telescope (CFHT) data because these have much more accurate source positions due to their spatial resolution than those of Chandra and longer wavelength IR data. We concentrate our identifications in the HSC $g$ band and WIRCam $K_ s $ band-based catalogs. To select the best counterpart, we utilized a novel extension of the likelihood-ratio (LR) analysis, where we used the X-ray flux as well as $g - K_ s $ colors to calculate the likelihood ratio. The spectroscopic and photometric redshifts of the counterparts are summarized in this work. In addition, simple X-ray spectroscopy was carried out on the sources with sufficient source counts. We present the resulting catalog in an electronic form. The main ID catalog contains 403 X-ray sources and includes X-ray fluxes luminosities $g$ and $K_ s $ band magnitudes, redshifts and their sources, and optical spectroscopic properties, as well as intrinsic absorption column densities and power-law indices from simple X-ray spectroscopy. The X-ray sources identified in this work include 27 Milky-Way objects, 57 type I AGNs, 131 other AGNs, and 15 galaxies. The catalog serves as a basis for further investigations of the properties of the X-ray and NIR sources in this field. We present a catalog of optical ($g$ band) and NIR ($K_ s $ band) identifications of Chandra X-ray sources in the AKARI NEP Deep field with available optical/NIR spectroscopic features and redshifts as well as the results of simple X-ray spectroscopy. In the process, we developed a novel X-ray flux-dependent likelihood-ratio analysis for selecting the most likely counterparts among candidates.
Current and future large surveys will produce unprecedented amounts of data. Realistic simulations have become essential for the design and development of these surveys, as well as for the interpretation of the results. We present MAMBO, a flexible and efficient workflow to build empirical galaxy and active galactic nucleus (AGN) mock catalogues that reproduce the physical and observational properties of these sources. We started with simulated dark matter (DM) haloes, to preserve the link with the cosmic web, and we populated them with galaxies and AGN using abundance matching techniques. We followed an empirical methodology, using stellar mass functions, host galaxy AGN mass functions, and AGN accretion rate distribution functions studied at different redshifts to assign, among other properties, stellar masses, the fraction of quenched galaxies, or the AGN activity (demography, obscuration, multiwavelength emission, etc.). As a proof test, we applied the method to a Millennium DM lightcone of 3.14 $ deg^2$ up to a redshift of $z=10$ and down to stellar masses of $ M \, M_ We show that the AGN population from the mock lightcone presented here reproduces with good accuracy various observables, such as state-of-the-art luminosity functions in the X-ray up to $z 7$ and in the ultraviolet up to $z 5$, optical/near-infrared colour-colour diagrams, and narrow emission line diagnostic diagrams. Finally, we demonstrate how this catalogue can be used to make useful predictions for large surveys. Using Euclid as a case example, we compute, among other forecasts, the expected surface densities of galaxies and AGN detectable in the Euclid $H_ E $ band. We find that Euclid might observe (on $H_ E $ only) about $10^ $ and $8 $ type 1 and 2 AGN, respectively, and $2 $ galaxies at the end of its $ deg^2$ Wide survey, in good agreement with other published forecasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.