We investigate relative CS-Baer objects in abelian categories in relationship with other relevant classes of objects such as relative Baer objects, extending objects, objects having certain summand intersection properties and relative CS-Rickart objects. Dual results are automatically obtained by applying the duality principle in abelian categories. We also study direct sums of relative CS-Baer objects, and we determine the complete structure of dual self-CS-Baer modules over Dedekind domains. Further applications are given to module categories.