Following up on our previous work on vibrationally resolved electronic absorption spectra including the effect of vibrational pre-excitation [J. von Cosel et al., J. Chem. Phys. 147, 164116 (2017)], we present a combined theoretical and experimental study of two-photon induced vibronic transitions in polyatomic molecules that are probed in the Vibrationally Promoted Electronic Resonance experiment using two-photon excitation (2P-VIPER). In order to compute vibronic spectra, we employ time-independent and time-dependent methods based on the evaluation of Franck-Condon overlap integrals and Fourier transformation of time-domain correlation functions, respectively. The time-independent approach uses a generalized version of the FCclasses method, while the time-dependent approach relies on the analytical evaluation of Gaussian moments within the harmonic approximation including Duschinsky rotation effects. For the Coumarin 6 dye, two-dimensional 2P-VIPER experiments involving excitation to the lowest-lying singlet excited state (S1) are presented and compared with corresponding one-photon (1P)-VIPER spectra. In both cases, coumarin ring modes and a CO stretch mode show VIPER activity, albeit with different relative intensities. Selective pre-excitation of these modes leads to a pronounced redshift of the low-frequency edge of the electronic absorption spectrum, which is a prerequisite for the VIPER experiment. Theoretical analysis underscores the role of interference between Franck-Condon and Herzberg-Teller effects in the two-photon experiment, which is at the root of the observed intensity distribution.