Context. LDN 1157 is one of the several clouds situated in the cloud complex, LDN 1147/1158. The cloud presents a coma-shaped morphology with a well-collimated bipolar outflow emanating from a Class 0 protostar, LDN 1157-mm, residing deep inside the cloud. Aims. The main goals of this work are (a) to map the inter-cloud magnetic field (ICMF) geometry of the region surrounding LDN 1157 to investigate its relationship with the cloud morphology, with the outflow direction and with the core magnetic field (CMF) geometry inferred from the mm-and sub-mm polarization results from the literature, and (b) to investigate the kinematic structure of the cloud. Methods. We carried out optical (R-band) polarization observations of the stars projected on the cloud to map the parsec-scale magnetic field geometry and made spectroscopic observations of the entire cloud in 12 CO, C 18 O and N 2 H + (J=1-0) lines to investigate its kinematic structure. Results. We obtained a distance of 340±3 pc to the LDN 1147/1158, complex based on the Gaia DR2 parallaxes and proper motion values of the three young stellar objects (YSOs) associated with the complex. A single filament of ∼ 1.2 pc in length (traced by the Filfinder algorithm) and ∼ 0.09 pc in width (estimated using the Radfil algorithm) is found to run all along the coma-shaped cloud. Based on the relationships between the ICMF, CMF, filament orientations, outflow direction, and the presence of an hour-glass morphology of the magnetic field, it is likely that the magnetic field had played an important role in the star formation process in LDN 1157. LDN 1157-mm is embedded in one of the two high density peaks detected using the Clumpfind algorithm. Both the detected clumps are lying on the filament and show a blue-red asymmetry in the 12 CO line. The C 18 O emission is well correlated with the filament and presents a coherent structure in velocity space. Combining the proper motions of the YSOs and the radial velocity of LDN 1147/1158 and an another complex LDN 1172/1174 which is situated ∼ 2 • east of it, we found that both the complexes are moving collectively toward the Galactic plane. The filamentary morphology of the east-west segment of LDN 1157 may have formed as a result of mass lost by ablation due to the interaction of the moving cloud with the ambient interstellar medium.