As the most frequent fungal pathogen in humans, Candida albicans can develop serious drug resistance because its biofilms are resistant to most antifungal agents; this leads to an urgent need to develop novel antifungals. Here, we evaluated the efficacy of an antithrombotic drug, suloctidil, against C. albicans biofilms in vitro and in vivo. We found that suloctidil is effective to inhibit C. albicans biofilm, with a minimum inhibitory concentration (MIC80) of 4 μg/mL, a biofilm inhibiting concentration (BIC80) of 16 μg/mL and a biofilm eradicating concentration (BEC80) of 64 μg/mL. Furthermore, the concentration-dependent characteristics of suloctidil were shown by its time-kill curves. Scanning electron microscopy images clearly revealed the morphological effects of suloctidil on biofilm. Yeast-to-hyphal form switching is a key virulence factor of C. albicans; therefore, we performed hyphal growth tests and observed that suloctidil inhibited yeast-to-hyphal form switching. This result was consistent with the down-regulation of hypha-specific gene (HWP1, ALS3, and ECE1) expression levels after suloctidil treatment. In vivo, 256 μg/mL of suloctidil significantly reduced fungal counts (P<0.01) compared to that in groups without treatment; the treatment group induced a slight histological reaction, especially when the treatment lasted for 5 days (P<0.01). Taken together, our data suggest that suloctidil is a potential antifungal agent.